
Moving Convolutional Neural Networks to
Embedded Systems: the AlexNet and VGG-16 case

Cesare Alippi∗

Politecnico di Milano
Milano, Italy

cesare.alippi@polimi.it

Simone Disabato
Politecnico di Milano

Milano, Italy
simone.disabato@polimi.it

Manuel Roveri
Politecnico di Milano

Milano, Italy
manuel.roveri@polimi.it

ABSTRACT

Execution of deep learning solutions is mostly restricted to

high performing computing platforms, e.g., those endowed

with GPUs or FPGAs, due to the high demand on compu-

tation and memory such solutions require. Despite the fact

that dedicated hardware is nowadays subject of research and

effective solutions exist, we envision a future where deep

learning solutions -here Convolutional Neural Networks

(CNNs)- are mostly executed by low-cost off-the shelf em-

bedded platforms already available in the market.

This paper moves in this direction and aims at filling the

gap between CNNs and embedded systems by introducing

a methodology for the design and porting of CNNs to lim-

ited in resources embedded systems. In order to achieve this

goal we employ approximate computing techniques to re-

duce the computational load and memory occupation of the

deep learning architecture by compromising accuracy with

memory and computation.

The proposed methodology has been validated on two

well-know CNNs, i.e., AlexNet and VGG-16, applied to an

image-recognition application and ported to two relevant

off-the-shelf embedded platforms.

KEYWORDS

Embedded Systems, Deep Learning, Convolutional Neural

Networks, Approximate Computing.

ACM Reference Format:

Cesare Alippi, Simone Disabato, and Manuel Roveri. 2018. Moving

Convolutional Neural Networks to Embedded Systems: the AlexNet

and VGG-16 case. In Proceedings of International Conference on

∗Cesare Alippi is also with Universitá della Svizzera Italiana (USI),

Switzerland.

Information Processing in Sensor Networks (IPSN) (IPSN’2018). ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION

The ongoing technological (re-)evolution hasmade embedded

systems pervasive to constitute the main building blocks for

cutting-edge distributed application scenarios (e.g., Internet-

of-Things, Industry 4.0, Smart Homes and Cities, Intelligent

transportation). However, in order to design effective, effi-

cient and credible real-world solutions (say out-of-lab so-

lutions), pervasive computing systems must be endowed

with different levels of intelligence in the data acquisition

and processing phases as well as in the decision-making

one [29][1]. In fact, moving intelligence to the datastream-

production level (i.e., directly at the sensor or cluster of

sensors level) allows the pervasive computing system to re-

duce the decision-making latency and the communication

bandwidth and improve the energy-efficiency [4][6].

For these reasons, the interest associated with the embed-

ding of intelligence in embedded systems is steadily increasing

over time, leading to a wide range of machine learning and

computational intelligence-based solutions for embedded

platforms (e.g., adaptive sampling algorithms [2], model-free

fault detection and diagnosis mechanisms [5]). The interest

here is in providing intelligent solutions executable as ex-

tra functions in embedded systems and, as such, designed

to take into account constraints on memory, computation

and energy. Different levels of intelligence are also part of

the application, for instance, as it happens in deep learn-

ing/convolutional neural networks-based solutions that rep-

resent the state-of-the-art in many recognition/classification

applications. Differently from traditional “shallow” solutions,

where features are designed manually, deep learning tech-

niques learn both the needed features and the classification

task [26]. Among the wide range of deep learning solutions,

this paper focuses on Convolutional Neural Networks (CNNs)

that, among the others, represent the state-of-the-art solu-

tions for image recognition (as well as video classification,

natural language processing, drug discovery and modelling

artificial players in games [8]). AlexNet [31], VGG-16/VGG-

19 [40], OverFeat [38], GoogLeNet [43], ResNet [25] are some

212

2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks

0-7695-6377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/IPSN.2018.00049

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

of the most popular CNNs present in the literature (further

CNNs can be found in [45], [32] and [47]). The deep archi-

tecture of these CNNs is generally organized into a pipeline

of descriptors characterized by an increasing granularity

of the representation, i.e., from edges and corners to mo-

tifs, parts and, finally, to objects. To achieve this goal, CNNs

rely on multiple convolutional and sub-sampling layers to

extract the features and reduce their dimensionality, respec-

tively, and on classification modules (e.g., fully connected

and softmax) to provide the final classification of the input

image. For these reasons, CNNs are typically characterized

by a high computational load and memory occupation. For

example, the deep architecture of AlexNet encompasses ap-

proximately 61 million parameters requiring more than 230

MB for the storage of the network weights only and more

than 725 million floating-point operations to provide an out-

put; VGG-16 is even more demanding in terms of memory

and computation (i.e., more than 138 million parameters re-

quiring more than 527 MB for the storage and more than 13

billion operations to process the input image).

It is obvious that the requested high computational load

and memory occupation find in Graphics Processing Units

(GPUs) or custom hardware (Field-Programmable Gate Ar-

ray -FPGA- or ad-hoc hardware)[17] a natural hosting plat-

form. On the other side, embedded systems are generally

characterized by technological constraints on memory and

computation (i.e., the amount of RAM memory ranges from

few KB to few MB and the clock frequency from dozens

to hundreds of MHz). For these reasons, to the best of our

knowledge, embedded systems have never been considered

as viable technological solutions for CNNs and the use of

CNNs as well as other deep learning techniques in such sys-

tems still represents a completely unexplored research field

[17] despite of its utmost relevance.

The aim of this paper is to fill the gap between CNNs

and embedded systems by introducing a methodology to de-

sign application-specific and approximated CNNs able to be

executed in embedded systems characterized by strong con-

straints on memory, computation and energy consumption.

The contributions of the paper are:

• a methodology to design application-specific and ap-

proximated CCNs able to be executed in off-the-shelf

embedded systems;

• a novel filter-selection mechanism for approximated

CNNs able to activate only the convolutional filters

useful or requested for the application-specific classi-

fication problem;

• the first porting of an application-specific and approxi-

mated CNN to embedded platforms, here an STM32-F7

and a Raspberry Pi 3B.

The paper is organized as follows. Section 2 describes the

related literature. The approximated versions of CNNs are

introduced in Section 3, while the proposed methodology

for designing approximated CNNs is detailed in Section 4.

The experimental results and the desing/development of an

image-recognition embedded application on the STM32-F7

and Raspberry Pi 3B embedded platforms are described in

Section 5. Comments and future works are finally drawn in

Section 6.

2 RELATED LITERATURE

The literature is plenty of solutions aiming at reducing the

computation and memory requirements of CNNs by means

of approximation techniques. Such solutions typically oper-

ate during the training phase of CNNs and allow to reduce

the training time that is typically very high for deep architec-

tures (i.e., from hours to weeks on high-performance comput-

ing systems) [14]. For example, [33][34] introduce approxi-

mations in the sequence of convolutional and max-pooling

layers by proposing joint convolutional/sub-sampling layers.

Differently, separable convolutional filters have been intro-

duced in the training phase [37] to learn sparse representa-

tions of the inputs. Unfortunately, reducing the complexity

of the training phase does not impact the operational phase

since CNNs are very expensive from the computational point

of view even during the processing of the input images [17].

A relatively large literature about precision scaling in

CNNs exists [42]. For example, the idea of compressing the

parameters of the convolutional layers and fine-tuning the

fully-connected layers has been proposed in [14] and [7],

while [23] focuses on reducing the memory occupation of

CNNs through pruning, weight quantization and coding tech-

niques. These solutions provide meaningful reductions in

terms of memory occupation but, unfortunately, the reduc-

tion in computational load (provided, for example, by the use

of specific libraries for sparse representation or by smaller

memory footprints reducing the data transfer overhead) is

very limited.

Conversely, the literature about CNNs for embedded sys-

tems is very limited and available solutions refer to either

general-purpose or custom embedded hardware [17].

General-purpose hardware is becoming very popular thanks

to its reduced costs, flexibility and easy-to-use properties.

[13] and [39] introduce optimized versions of CNNs for

general-purpose CPUs implementing cross-image paralleliza-

tion via software through multi-threading. Differently, [11]

and [44] propose modifications to CNNs so as to increase

the speed of processing images via unrolling convolutional

operations and the quantization of the network weights. De-

spite the advantages provided by these solutions, their use

in general-purpose embedded systems is still unfeasible due

to the high computational and power-consumption demand.

213

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

Interestingly, in the field of general-purpose hardware, GPUs

gained importance in the recent years providing high-speed

processing and parallelism [30] [12]. Unfortunately, GPUs

are typically not present in embedded systems.

Differently, custom hardware relies on ad-hoc designed

platforms. For this reason, it typically provides better perfor-

mance and less power consumption than general-purpose

hardware at the expense of larger costs in the design phase.

While designing hardware solutions for CNNs from the

scratch (e.g., see [10]) could be a very complex operation

requiring high skills and expertise, FPGA solutions have

been recently proposed to support the design of ad-hoc hard-

ware for CNNs. In this research stream, [46] introduced a

FPGA-based accelerator for CNNs implementing floating-

point operations for the convolutional layers. A FPGA-based

streaming method for CNNs has been recently proposed

in [17]. This work introduces also a compiler to transform

high-level representations of CNNs into executable codes

for FPGA able to support data reuse and concatenation for

hardware acceleration. Other FPGA-based solutions can be

found in [28], [19] and [16]. Unfortunately, the presence of

FPGAs in embedded systems is still very limited.

As a final remark, in spite of the wide range of algorithmic

and technological solutions available to reduce the compu-

tational load and memory occupation of CNNs, their use

in general-purpose embedded systems is still not a viable

technological solution. This paper provides a first relevant

contribution in this direction.

3 CONVOLUTIONAL NEURAL
NETWORKS FOR EMBEDDED SYSTEMS

In order to design and develop CNNs able to operate within

the strict requirements of embedded systems (in terms of

memory occupation and computational load), this paper in-

troduces application-specific and approximated CNNs able to

run on embedded systems. More specifically, the proposed

solutions represent transformed versions of state-of-the-art

CNNs that have been:

• tailored to an application-specific classification prob-

lem, i.e., proposed solutions are able to solve a large

class of applications by relying on the general-purpose

features extracted by CNNs and a classifier trained on

the specific application at hand. To achieve this goal,

the classification layer of the original CNNs is replaced

by a classifier trained on the given image-classification

problem;

• approximated in terms of architecture and weight pre-

cision w.r.t. the original CNNs so as to fit in a given

embedded-system platform. To achieve this goal, the

original CNNs is pruned, while the wordlenght for the

weights is reduced.

The idea of considering available CNNs relies on the fact

that these networks represent the state-of-the-art in many

image-recognition scenarios. More specifically, we want to

exploit the intrinsic ability of CNNs to automatically extract

features with increasing complexity and meaning. In fact,

as mentioned in Section 1, CNNs extract low-level features

such as edges and corners in the first layers that are hier-

archically organized, in next layers, into motifs, parts and,

finally, into high-level “objects”. Despite the fact that they

have been configured on the dataset used to train the CNN,

this hierarchy of features could be general enough to be

used even in other image-classification scenarios [36]. On

the one hand, this might lead to sub-optimal solutions w.r.t.

CNNs trained from scratch for a specific classification prob-

lem. On the other hand, the re-training of CNNs would be

infeasible in real-world scenarios of embedded systems since

the computational power is limited. Moreover, relying on

ready-to-use CNNs as “general-purpose” feature extractors

would allow us to consider the designed CNNs for embedded

systems even in time-varying scenarios or environment [15],

i.e., those affected by concept-drift inducing changes in the

probability density functions of the classes. In this way we

can adapt the application-specific classification step of the

designed approximated CNNs in responses to changes in

the data-generating process (i.e., following an active, pas-

sive or hybrid adaptive approach [15]) without requiring the

re-training of the convolutional layers.

More formally, let I be am ×n × c input image ofm rows,

n columns and c channels (i.e., c = 1 for gray-scale images

and c = 3 for RGB images). Let y ∈ Λ = {ω1, . . . ,ωΛ} be the

output of the CNN representing the multi-class classification

of I. The given CNNΦ is defined as

y = Φ(I) (1)

where

Φ(I) = ϕ (l)
θl
(Il−1)

Ij = ϕ (j)
θ j
(Ij−1), with j = 2, . . . , l − 1

I1 = ϕ (1)
θ1
(I),

l is the number of layers, ϕ (i)
θi
, i = 1, . . . , l , is the function

parametrized in θi accounting for i-th layer of the CNN and

Ii the output of the i-th layer to be processed by the next

i + 1-th layer. ϕ (i)
θi

s can be convolutional filters, Max-pooling

operators, Rectified Linear Unit (ReLU), Fully-Connected

layers or Softmax layers. Details about the AlexNet and the

VGG-16 are given in Table 1.

Given function Φ we want to identify the application-

specific and approximated version ˜Φ of Φ. To achieve this

goal, as shown in Figure 1,Φ undergoes the following two

approximation mechanisms [35]:

214

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

…

… … …

b = 32 bits b = 32 bits b = 32 bits

l layers

(a) The general architecture of a Convolutional Neural Network.

…

…

k layers

… ……

=8 or 16 bits =8 or 16 bits

(b) The general architecture of a Convolutional Neural Network for Embedded Systems.

Figure 1: The architectures of Convolutional Neural Networks and Convolutional Neural Networks for Embedded

Systems

3.0.1 Task dropping. As described in [35], the goal of task

dropping is to reduce the computational load and the mem-

ory occupation by skipping the execution of some tasks asso-

ciated with the processing chain. Here, instead of considering

the whole chain of l layers ofΦ, we keep in ˜Φ only the first

k layers1. As shown in Figure 1(b), a classification algorithm

μΘ parametrized in the vectorΘ ∈ RΘ is appended at the end

of the k-th layer to accomplish the classification of I based

on the activations stored in Ĩk . The classifier can be a Sup-

port Vector Machine, a Decision Tree, a Feed-forward Neural

Network, etc.... In the approximated version, μΘ takes the

role of the fully-connected and softmax layers that typically

perform the classification phase inΦ. To achieve this goal, μΘ
is configured on a training set T = {(I1,yo1), . . . , (IN ,yoN)}
that is provided to ˜Φ, where Ii is the i-th input image and

yoi ∈ Λ̃ = {ω̃1, . . . , ω̃Λ̃} the associated class. More specifi-

cally, μΘ is configured on {(Ĩ 1
k
,yo1), . . . , (Ĩ

1
N ,y

o
N
)}, where Ĩ i

k
is the value of the activations at the output of the k-th layer

1Different strategies of task dropping can be envisioned, e.g., by selecting

non-consecutive layers ofΦ.

when considering the input image Ii . We emphasize that

the classification problem to be addressed by ˜Φ is generally

different from the one ofΦ, hence the set of classes Λ̃ to be

learned by μΘ is not the one used to trainΦ (e.g., the AlexNet

is trained on the 1000 classes of the ILSCVRC dataset, while

μΘ could be trained on two or more classes not belonging to

ILSCVRC).

3.0.2 Precision scaling. The aim of precision scaling is to

change the precision (number of bits for the representation)

of the inputs or intermediate operands to reduce the mem-

ory occupation [35]. In our specific case, precision scaling

aims at reducing the memory occupation associated with

the weights ofΦ by considering approximated versions ˜θi
of θi . In fact, as stated in [21], weights θi s are typically real

numbers and standard implementations inΦ encompass 32-

bit data types (floating point). Precision scaling, which is

computed through the rounding of weights θi s, aims at em-

ploying a fixed-point representations of the weights so as to

consider 16-bit or 8-bit data types (e.g., int or short int). This

aspect will be clarified in the next section where the memory

215

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

occupation of ˜Φ is detailed. Interestingly, there is a paral-

lelism between precision scaling and CNN regularization.

On one hand, the rounding operation of precision scaling

introduces a perturbation in the original weights θis [1].

On the other hand, noise-addition or dropout mechanisms

[41] are typically considered during the training of CNNs to

make them more robust against perturbations, e.g., more tol-

erant to truncation/rounding operations. Other techniques

to achieve similar level of robustness could encompass the

modification of the figures of merit to be optimized during

learning [41].

Given the above notation, the procedure T transformsΦ

into ˜Φ
˜Φ = T (Φ,k,q,T , μΘ) (2)

where Φ is the original CNN, k the number of considered

layers, q the number of decimal digits to be rounded, T the

training set and μΘ the classification algorithm to be consid-

ered. The output ˜Φ of T is the approximated CNN defined

as follows

ỹ =˜Φ(I) = μΘ̂ (Ĩk) (3)

Ĩj = ϕ (j)
θ̃ j
(Ĩj−1), with j = 2, . . . ,k

Ĩ1 = ϕ (1)
θ̃1
(I)

where ỹ ∈ Λ̃, Ĩi is the output of the i-layer of ˜Φ, and the

parameter vector Θ̂ of μΘ has been trained on

{(Ĩ 1k ,y
o
1), . . . , (Ĩ

N
k ,y

o
N)}

being Ĩ i
k
the output of the k-layer associated with the i-th

image of T .

4 DESIGNING APPROXIMATED
CONVOLUTIONAL NEURAL
NETWORKS

The proposed methodology aims at designing application-

specific and approximated ˜Φ ofΦ as defined in Eq. (3). Section

4.1 characterizes the computational load and memory occu-

pation ofΦ and ˜Φ, while Section 4.2 describes the proposed

methodology. A further level of approximation for ˜Φ is intro-

duced in Section 4.3 to consider, in the k-th layer, only the

convolutional filters useful for the application-specific classi-

fication problem; this allows to further reduce computational

load and memory occupation of ˜Φ.

4.1 Computational complexity and
memory occupation

Given Φ and ˜Φ defined in Eq. (1) and Eq. (3), respectively,

we can now evaluate their computational load and memory

occupation. More specifically, the memory occupation ofΦ

Table 1: Characteristics of AlexNet and VGG-16. l is
the number of layers, NΦ is the number of weights to

be stored and b the number of bits considered for each

weight.MΦ andCΦ are thememory occupation and the

computational load, respectively.

CNN AlexNet VGG-16

l 23 39

NΦ 60.9 × 106 138.3 × 106

b 32 32

MΦ 232.5 MB 527.8 MB

CΦ 725.2 × 106 13626.2 × 106

and ˜Φ can be defined as

MΦ = NΦb (4)

and

M
˜Φ = N

˜Φb̃, (5)

where NΦ and N
˜Φ are the number of weights to be stored in

Φ and ˜Φ, respectively, andb and b̃ are thememorywordlengths

in terms of number of bits required to store each weight in

Φ and ˜Φ, respectively. The overhead required to store the

data structures in typically negligible compared to the one

requested by weights. Typically, in Φ, b = 32 bit since the

single-precision floating point-data type is used [21]. With-

out any loss of generality we assume that all the weights in

Φ have the same wordlength. The precision scaling mecha-

nism allows to achieve b̃ < b when the rounded fixed-point

representation of θ̃i can be stored with b̃ = 8 or b̃ = 16 bits

[1], i.e., when θ̃ ji · 10p−q with j = 1, . . . ,k and i = 1, . . . , |θ̃ j |
belong to the interval [−2b̃−1, 2b̃−1 − 1]. The memory reduc-

tion when considering ˜Φ instead ofΦ depends explicitly on

k and implicitly on q and can be quantified as

ΔM = MΦ −M ˜Φ = N
˜Φ (b − b̃) + (NΦ − N ˜Φ)b . (6)

As suggested in [24], the computational load ofΦ can be

approximated as the sum of the computational load of the

convolutional filterCΦ
conv and the one of the fully connected

CΦ
f c

layers, i.e.,

CΦ = CΦ
conv +C

Φ
f c , (7)

while the computational loads introduced by pooling and

ReLU layers can be typically neglected [18]. Without any

loss of generality the computational load is measured as the

number of multiplications required to accomplish the layers

goals2. The convolution computational load CΦ
conv of Φ is

defined as

CΦ
conv =

Nc∑

i=1

ni−1 · s2i · ni ·m2
i , (8)

2Other figures of merit could be considered as well.

216

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

where Nc is the number of convolutional layers inΦ, ni is
the width of the i-th layer, i.e., the number of filters, ni−1
represents the number of input channels at the convolu-

tional layer i , and si andmi refer to the spatial size of the

filter and the spatial size of the output feature map of the

i-th layer, respectively. The computational load CΦ
f c

of the

fully-connected layers is the product between the number of

neurons ni of the layer i and the one ni−1 of the layer i − 1,

i.e.,

Cf c =

Nf c∑

i=1

ni−1 · ni (9)

where Nf c is the number of fully connected layers inΦ.

Similarly to Eq. (7), the computational load of ˜Φ can be

defined as

C
˜Φ = C̃conv + C̃μ , (10)

where

C̃conv =

˜Nc∑

i=1

ni−1 · s2i · ni ·m2
i (11)

being ˜Nc ≤ k the number of convolutional layers in ˜Φ and C̃μ

is the computational load of μΘ. In most of the cases (e.g., by

considering SVMs, Decision Trees, FFNNs) [9], C̃conv � C̃μ ,

hence

C
˜Φ � C̃conv . (12)

The reduction in computational load when considering ˜Φ

depends only on k (being ˜Nc the number of convolutional

layers among the k layers of the ˜Φ) and can be computed as

follows

ΔC = CΦ −C ˜Φ =

Nc∑

i=˜Nc+1

ni−1 · s2i · ni ·m2
i +C

Φ
f c . (13)

As expected, task dropping provides a reduction in both

memory occupation and computational load, while precision

scaling allows for reducing only memory occupation.

Details about the memory occupation and computational

load of AlexNet and VGG-16 are given in Table 1. In Table 2

details about the corresponding ˜Φ for an image-recognition

application targeted to two off-the-shelf embedded platforms

are given.

4.2 The proposed methodology

The proposed methodology M, shown in Figure 2, aims

at designing ˜Φ able to run on a given embedded-system

platform. To achieve this goal,M receives in input a dataset

T and the constraints on memory M and computation C
provided by the embedded-system application designer. The

outputΨ ofM is the Pareto set of ˜Φ satisfying the constrains

on M and C . More formally,M is defined as

Ψ =M (T , M̄, C̄) (14)

�
�

�����	�
��
����
�����	�
��

��
��

��
��

��
��

�

���������	
�
����

�
�

��

��
�

���������	
�
������

���������

���������

�
�����������
���
����	�
 �
�������	
�

���

����
���

����

���������
��	���

���
�����
���
���

Figure 2: The proposed methodology for designing

convolutional neural networks for embedded sys-

tems.

where

Ψ = {(˜Φi , âi ,M
˜Φi ,C

˜Φi), i = 1, . . . ,NΨ }
stores the NΨ

˜Φ representing the Pareto frontier w.r.t. the

estimated accuracy âi on T , the memory occupation M
˜Φi

and the computational load C
˜Φi defined in Eq. (5) and (12),

respectively.

In the process of identifyingΨ ,M operates in two differ-

ent steps.

Step 1. Starting from a givenΦ, we define as ϒI the set of
˜Φ satisfying the constraints on M and C , i.e., ,

M
˜Φk,p,μΘ ≤ M

C
˜Φk,p,μΘ ≤ C

obtained through T and the exploration of k = {1, . . . , l },
q = {0, . . . ,qmax }, and μΘ ∈ {μ1Θ, . . . , μmax

Θ }. qmax is the

user-defined maximum number of fractional digits to be

rounded in the precision scaling phase3. Obviously, once a

fixed-point data-type representation is considered, qmax is

related to the maximum number of bits that are used to store

the fractional part of weights θ̃is. The set of classification

3In the experimental analysis in Section 5, qmax = 5. The selection of q

could be further optimized by considering different values of q for different

layers or filters of ˜Φ .

217

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

algorithms to be considered is {μ1Θ, . . . , μmax
Θ }. In Eq. (14),

we are considering a single Φ but the whole methodology

encompasses multipleΦs in input (as shown in Section 5).

Step 2. We estimate the accuracy âi of each ˜Φi in ϒI and

provide inΨ the Pareto frontier w.r.t. â, M
˜Φ and C

˜Φ . In this

step we estimate the parameter vector Θ̂ by means of a train-

ing procedure on T . The computation of âi is performed

through sample-partitioning but different techniques could

be considered as well (e.g., Leave-One-Out, K-fold Cross-

validation, or Bootstrap). As pointed out in [3], the com-

parison between the estimated accuracies of two ˜Φ should

in principle take into account also the confidence intervals

of the estimate (especially when the number of samples is

small). This can be easily managed withinM by considering

a paired test to assess the performance comparison instead

of simply comparing the estimated accuracies [3].

Once a specific ˜Φ has been selected fromΨ by the embedded-
system designer, it can be automatically translated into C-

language source code and libraries (both .c and .h are pro-

vided). This step can be easily made automatic since, given
˜Φk,p,μΘ , all the layers and weights and the classification al-

gorithm have been functionally defined. Hence, they can be

easily imported by pre-defined C libraries storing ready-to-

use CNNs (e.g., VGG-16 and AlexNet, etc..) or classification

algorithms (e.g., SVM, Decision Tree, etc...). The C-language

source code and libraries representing the chosen ˜Φ can be

easily inserted into software projects for designing the em-

bedded systems endowed with intelligent abilities4.

4.3 Filter-selection mechanism

Once a specific ˜Φ inΨ has been selected by the embedded-

system designer, we can perform an additional approxima-

tion to further reduce computational load and memory occu-

pation on the given embedded-system platform. More specif-

ically, when the k-th layer of ˜Φk,p,μΘ is a convolutional layer

(but this can be easily extended to all the layers whose pro-

cessing does not require inter-filtering operations, e.g., cross-

filter normalization, since the last convolutional layer), we

can apply a filter-selection procedure to identify those filters

providing output features that are truly beneficial to support

the classification by μΘ and discard the others (i.e., those with

negligible or negative effects on the specific classification

problem).

This task is very close to the feature selection techniques

present in machine learning [22] but, here, the goal is to

minimize the number of filters to be activated (and not just

the number of features to be computed). To achieve this goal

4The code of the proposed methodology is made available to the

scientific community as a Matlab Toolbox at the following URL:

http://roveri.faculty.polimi.it/software-and-datasets/.

we ranked all the features in Ĩk according to the classification

accuracy computed onT by considering one feature at a time

as input of μΘ. Then, we set the maximum number Fmax of

filters to be activated5 and, for each f = 1, . . . , Fmax , we

start selecting the first feature of the ranking as well as

all the other features belonging to the same filter and we

remove them from the ranking. We repeat this step up to

when f filters have been selected. Finally, we train μΘ with

the features coming from the f filters previously selected.

The value of f providing the highest classification accuracy

is finally selected.

This filter-selection optimization could be beneficial for ˜Φ
from three main perspectives. First, we can avoid the storage

of the weights of those filters of the k-th layer that have

not been selected, hence reducing the memory occupation

of ˜Φ. Second, reducing the amount of filters to be executed

allows us to significantly reduce the computational load of

the k-th layer and, thus, of the whole ˜Φ. Third, it is possible to

train μΘ on a smaller set of features (i.e., those providing the

highest class-specific information), hence reducing the curse-

of-dimensionality problem [22] and, generally, providing

higher classification accuracies.

5 EXPERIMENTAL RESULTS

We evaluated the effectiveness of the proposed methodology

in two main steps. At first, we tested the proposed method-

ology on a wide synthetic analysis encompassing different

configurations of the number of layers k , the number of dec-

imal digits to be rounded q and the classification algorithms

μΘ. In this step the considered CNNs are the AlexNet and

the VGG-166 . The results of this analysis are described and

commented in Section 5.1. Afterwards, in Section 5.2, we

applied the proposed methodology to port the AlexNet to

two off-the-shelf embedded platforms.

The dataset used for all the experiments is the Caltech-

256 benchmark [20] containing more than 256 image classes

and at least 80 images per class. It is worth noting that this

benchmark is not the one used to train the AlexNet or the

VGG-16 that have been trained on ILSVRC [27]. The set

of machine learning algorithms considered for μΘ is: SVM,

Tree Bagger (with 100 Decision Trees), k-Nearest Neighbour

(where k is set as the square root of the number of samples

in the training set), and Decision Tree.

5In the experimental analysis in Section 5, Fmax = 5.
6The proposed methodology can be applied to any other Feed-Forward

Convolutional Neural Networks. For example, the methodology could be

applied to the ResNet [25], where the task-dropping procedure described in

Section 3 considers each “Residual block” as a single layer.

218

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

(a) The values of the accuracy â for the AlexNet and for the different classi-

fication algorithms when k ranges from 16 to 19, q = 0, and the number of

classes N Λ̃ = 3.

(b) The values of the accuracy â for the AlexNet and for the different classi-

fication algorithms when q ranges from 0 to 5, k = 19, and the number of

classes N Λ̃ = 3.

(c) The values of the accuracy â for the AlexNet and the SVMwhen k ranges

from 16 to 19, q = 0, and the number of classes N Λ̃ ranges from 2 to 10.

(d) The values of the accuracy â for the AlexNet and the SVMwhen q ranges

from 0 to 5, k = 19, and the number of classes N Λ̃ ranges from 2 to 10.

Figure 3: The experimental results showing the values of â when k ranges from 16 to 19 and q from 0 to 5 with

different learning algorithms and different number of classes N Λ̃. Here, the considered CNN is the AlexNet.

5.1 Synthetic analysis on image
recognition

We evaluated the proposed methodologyM on different con-

figurations of k , q,Φ, i.e., AlexNet and VGG-16, and number

of classes N Λ̃ in T . The specific set of classes in each experi-

ment is randomly extracted from the Caltech-256. Then, the

settings for each experiment are the following: the number of

samples per each class is theminimum between two-hundred

and the minimum number of samples in the target categories;

these images are then randomly split into a training (70%)

and a test set (30%). Experiments are repeated 100 times and

results averaged.

The outcomes of this experimental analysis are shown in

Figure 3 and 4. More specifically, Figures 3(a) and 3(b) show

the values of the classification accuracy âwhenk ranges from

16 to 19 andq from 0 to 5, respectively, with different learning

algorithms. Here, the number of classes N Λ̃ in T is equal to

3 and the considered CNN is the AlexNet. These results are

particularly interesting since they show that applying task

dropping and precision scaling has a minimal effect on the

classification accuracy. This allows to support the idea of
˜Φ as an application-specific and approximated version ofΦ.

Reducing k and increasing q allows to significantly reduce

both memory occupation and computational load in ˜Φ as

described in Section 4.1. In fact, even considering q = 0,

reducing k from 19 to 16 allows to reduce the computational

219

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

(a) The values of the accuracy â w.r.t. M
˜Φ for different configurations of (k ,

q). The considered CNN is the AlexNet and the number of classes N Λ̃ = 3.

(b) The values of the accuracy â w.r.t. C
˜Φ for different configurations of (k ,

q). The considered CNN is the AlexNet and the number of classes N Λ̃ = 3.

Here, q does not affect the computational load.

(c) The values of the accuracy â w.r.t. M
˜Φ for different configurations of (k ,

q). The considered CNN is the VGG-16 and the number of classes N Λ̃ = 3.

(d) The values of the accuracy â w.r.t. C
˜Φ for different configurations of (k ,

q). The considered CNN is the VGG-16 and the number of classes N Λ̃ = 3.

Here, q does not affect the computational load.

Figure 4: The experimental results showing the relationships among â,M
˜Φ andC

˜Φ for different configurations of

(k , q). The considered CNNs are the AlexNet and the VGG-16, while the number of classes N Λ̃ = 3. .

load C
˜Φ from 721 to 667 million operations and the memory

occupation from 227.5 Mb to 9.3 Mb.

Similar results are shown in Figures 3(c) and 3(d), describ-

ing the values of â for the SVM w.r.t k and q, while the

number of classes N Λ̃ in T ranges from 2 to 10. Even in this

case, results are particularly interesting since they show that

the number of classes N Λ̃ has a negligible effects in the ac-

curacy reduction when k or q vary. On the one hand, fixing

N Λ̃, the reduction in â is negligible when k decreases or q
increases. On the other hand, fixing k or q, the values of â

depends on N Λ̃. Both behaviours are reasonable and in line

with what expected.

Experimental results in Figure 4 show the relationship

between â, M
˜Φ and C

˜Φ for different configuration of (k , q)
and for AlexNet and VGG-16. Here, the whole set of classi-

fication algorithms has been considered and N Λ̃ = 3 image

classes have been randomly extracted from the Caltech-256

benchmark. In particular Figures 4(a) and 4(b) show the ex-

perimental results about the AlexNet, while Figures 4(c) and

4(d) the ones about the VGG-16. These results show the abil-

ity of the proposed methodology to explore configurations

of (k , q) to significantly reduceM
˜Φ and C

˜Φ with a minimal

reduction in â. This specifically holds for the SVM that, for

example, provides a reduction from 227.5 MB to 80.2 MB of

memory occupation and from 721 to 704 million operations

220

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

when passing from configuration (k = 19, q = 0) to (k = 17,

q = 4) for the AlexNet as shown in Figures 4(a) and 4(b). This

meaningful reduction in memory occupation and computa-

tional load comes at the expenses of a negligible reduction

in â, i.e., less than 1%. Similar comments can be made for

results in Figures 4(c) and 4(d) about the VGG-16.

These results corroborate the idea of using ˜Φ as an approx-

imated version ofΦ to be executed on embedded systems.

5.2 Porting the approximated AlexNet to
two off-the-shelf embedded platforms
for image recognition

The proposed methodology has then be tested on an image-

recognition embedded application whose technological tar-

gets are two well-known off-the-shelf embedded platforms:

the STM32F7 micro-controller and the Raspberry Pi 3B. Tech-

nological details about these two embedded platforms are

given in Table 2.

To allow a fair evaluation of the proposed methodology,

the considered image-recognition application has been mod-

elled as a two-class classification problem aiming at distin-

guishing between the class people and car of the Caltech-256

benchmark. Hence, the considered dataset T encompasses

209 images of people and 116 of cars.

To ease the comparison, in this analysis, the considered

Φ is the AlexNet, while the constraint M on the memory

occupation has been set to one fifth of the available RAM of

the STM32F7. The constraint onC has been set to 100.0×106.
Given the dataset T and the constraints M and C for both

embedded platforms, the methodologyM has been applied

and results are given in Table 2. These results show the ability

of the proposed methodology to design effective ˜Φ satisfying

the constraints given by the technology. In particular, for the

STM32F7, the selected configuration of ˜Φ refers to k = 5 and

q = 0. In this specific case, the filter-selection optimization

described in Section 4.3 has been carried out, leading to

the use of just one filter, i.e. f = 1 (the selected filter is

the tenth filter of first convolutional layer of the AlexNet;

the normalization step has not been here carried out). This

lead to very low memory occupation (i.e., M
˜Φ = 1.4KB) and

computational load (i.e., C
˜Φ = 1.09 × 106). The selected μΘ is

the Decision Tree, while the estimated accuracy is â = 87.9.
The execution time et for the processing of one image by the

designed ˜Φ is approximately 2700ms (measured through an

oscilloscope).

The results about the Raspberry Pi 3B show â, M
˜Φ and

C
˜Φ for three different configurations, i.e., q = 0 and filter-

selection, q = 0 and no filter-selection, and q = 4 and no

filter-selection. As expected, when the Raspberry Pi 3B oper-

ates in the same configurations of the STM32F7 (i.e., second

column of Table 2), the only difference resides in et , which

is significantly lower for Raspberry Pi 3B thanks to the more

powerful CPU. The third column of Table 2 refers to the

case where the filter-selection optimization is not carried

out leading to higherM
˜Φ ,C

˜Φ and et but guaranteeing a very

high â. Finally, the results about the configuration without

filter-selection optimization but with q = 4 are shown in

the forth column of Table 2. As expected, this configuration

halves M
˜Φ with no effect on C

˜Φ and et
7. Interestingly, this

reduction in M
˜Φ does not come at the expenses of â that is

in line with the one with q = 0.

6 CONCLUSIONS AND FUTUREWORKS

Embedded systems have never been considered as a viable

technological solutions for CNNs due to their high demand

on computation and memory. This paper aims at filling this

gap by introducing a methodology for the design and porting

of CNNs to embedded systems by employing approximate

computing techniques to reduce the computational load and

memory occupation. The proposed methodology has been

validated on two state-of-the-art CNNs and applied to an

image-recognition application running on two relevant off-

the-shelf embedded platforms.

Future works encompass the use of the designed Convo-

lutional Neural Networks for Embedded Systems in perva-

sive distributed systems (e.g., those based on Fog Comput-

ing/Networking) where (part of the) computation can be

offloaded to high-performance units in a distributed way. In

addition, as commented in Section 3, the designed Convolu-

tional Neural Networks for Embedded Systems can natively

be part of adaptive systems able to operate in nonstationary

environments. In this case, ad-hoc adaptation mechanisms to

reconfigure the classification and/or the convolutional layers

will have to be designed. Finally, the proposed methodology

will be extended to other standard Convolutional Neural

Networks frameworks (e.g., Tensorflow, Caffe, etc..).

ACKNOWLEDGMENT

This work has been partially supported by the project “GAU-

ChO - A Green Adaptive Fog Computing and Networking

Architecture” funded by MIUR under PRIN Bando 2015.

REFERENCES
[1] Cesare Alippi. 2014. Intelligence for Embedded Systems: A Methodologi-

cal Approach. Springer.

7The q parameter mainly affects the memory occupation, while its effect on

the execution time is strictly dependent on the specific implementation (and

platform): in the hardware platforms we considered the use of 16-bit FP

(the simplest implementation of q=4 case) in the C code does not reduce the

execution time since the GCC-compiler limits the usage of this data-type to

storage purposes only, casting the operands to 32-bit FP during processing.

221

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

Table 2: Porting an image-recognition application based on the AlexNet to STM32F7 and Raspberry Pi 3B.

Platform STM32F7 Raspberry Pi 3B

CPU ARMM7@ 167MHz ARM11 @ 1.2 GHz

RAM 512 KB 1024 MB

M 102 KB 102 KB

C 100.0 × 106 100.0 × 106

CNNΦ AlexNet AlexNet AlexNet AlexNet

k 5 5 5 5

q 0 0 0 4

Filter-selection

mechanism

yes yes no no

f 1 1 - -

μΘ Decision Tree Decision Tree SVM SVM

â 87.9 87.9 99.3 99.4

M
˜Φ 1.4 KB 1.4 KB 68 KB 34 KB

C
˜Φ 1.09 × 106 1.09 × 106 52.7 × 106 52.7 × 106

Exec. Time (ms) 2700 178 8687 8687

[2] Cesare Alippi, Giuseppe Anastasi, Mario Di Francesco, and Manuel

Roveri. 2009. Energy management in wireless sensor networks with

energy-hungry sensors. IEEE Instrumentation & Measurement Maga-

zine 12, 2 (2009).

[3] Cesare Alippi and Pietro Braione. 2006. Classification methods and

inductive learning rules: What we may learn from theory. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 36, 5 (2006), 649–655.

[4] Cesare Alippi, Romano Fantacci, Dania Marabissi, and Manuel Roveri.

2016. A Cloud to the Ground: The New Frontier of Intelligent and

Autonomous Networks of Things. IEEE Communications Magazine 54,

12 (2016), 14–20.

[5] Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. 2012. An

HMM-based change detection method for intelligent embedded sen-

sors. In Neural Networks (IJCNN), The 2012 International Joint Confer-

ence on. IEEE, 1–7.

[6] Cesare Alippi and Manuel Roveri. 2017. The (Not) Far-Away Path to

Smart Cyber-Physical Systems: An Information-Centric Framework.

Computer 50, 4 (2017), 38–47.

[7] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. 2016. YodaNN: An

Ultra-Low Power Convolutional Neural Network Accelerator Based

on Binary Weights. In 2016 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI). 236–241. https://doi.org/10.1109/ISVLSI.2016.111

[8] Itamar Arel, Derek C Rose, and Thomas P Karnowski. 2010. Deep

machine learning-a new frontier in artificial intelligence research

[research frontier]. IEEE computational intelligence magazine 5, 4

(2010), 13–18.

[9] Christopher M Bishop. 2006. Pattern recognition and machine learning.

springer.

[10] L. Cavigelli and L. Benini. 2016. A 803 GOp/s/W Convolutional Net-

work Accelerator. IEEE Transactions on Circuits and Systems for Video

Technology PP, 99 (2016), 1–1. https://doi.org/10.1109/TCSVT.2016.

2592330

[11] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High perfor-

mance convolutional neural networks for document processing. In

Tenth International Workshop on Frontiers in Handwriting Recognition.

Suvisoft.

[12] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:

Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759

(2014).

[13] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2012.

Implementing neural networks efficiently. In Neural Networks: Tricks

of the Trade. Springer, 537–557.

[14] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and

Rob Fergus. 2014. Exploiting linear structure within convolutional

networks for efficient evaluation. In Advances in Neural Information

Processing Systems. 1269–1277.

[15] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015.

Learning in nonstationary environments: A survey. IEEE Computa-

tional Intelligence Magazine 10, 4 (2015), 12–25.

[16] Aysegul Dundar, Jonghoon Jin, Vinayak Gokhale, Berin Martini, and

Eugenio Culurciello. 2014. Memory access optimized routing scheme

for deep networks on a mobile coprocessor. In High Performance Ex-

treme Computing Conference (HPEC), 2014 IEEE. IEEE, 1–6.

[17] Aysegul Dundar, Jonghoon Jin, Berin Martini, and Eugenio Culurciello.

2017. Embedded streaming deep neural networks accelerator with

applications. IEEE transactions on neural networks and learning systems

(2017).

[18] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann

LeCun, and Eugenio Culurciello. 2010. Hardware accelerated convolu-

tional neural networks for synthetic vision systems. In Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on.

IEEE, 257–260.

[19] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and

Eugenio Culurciello. 2014. A 240 g-ops/s mobile coprocessor for deep

neural networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops. 682–687.

[20] Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256

object category dataset. (2007).

[21] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. 2015. Deep learning with limited numerical precision. In

Proceedings of the 32nd International Conference on Machine Learning

(ICML-15). 1737–1746.

222

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

[22] Isabelle Guyon and André Elisseeff. 2003. An introduction to variable

and feature selection. Journal of machine learning research 3, Mar

(2003), 1157–1182.

[23] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:

Compressing deep neural networks with pruning, trained quantization

and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[24] Kaiming He and Jian Sun. 2015. Convolutional neural networks at con-

strained time cost. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 5353–5360.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[26] Robert D. Hof. 2013. 10 Breaktrough Technologies 2013: Deep Learning.

MIT Technology Review (2013).

[27] IMAGENET. 2017. Large Scale Visual Recognition Challenge (ILSVRC).

In http://www.image-net.org/challenges/LSVRC/.

[28] Jonghoon Jin, Vinayak Gokhale, Aysegul Dundar, Bharadwaj Krish-

namurthy, Berin Martini, and Eugenio Culurciello. 2014. An efficient

implementation of deep convolutional neural networks on a mobile

coprocessor. In Circuits and Systems (MWSCAS), 2014 IEEE 57th Inter-

national Midwest Symposium on. IEEE, 133–136.

[29] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic

computing. Computer 36, 1 (2003), 41–50.

[30] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional

neural networks. arXiv preprint arXiv:1404.5997 (2014).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet

classification with deep convolutional neural networks. In Advances

in neural information processing systems. 1097–1105.

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convo-

lutional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 3431–3440.

[33] FranckMamalet and Christophe Garcia. 2012. Simplifying convnets for

fast learning. Artificial Neural Networks and Machine Learning–ICANN

2012 (2012), 58–65.

[34] Franck Mamalet, Sébastien Roux, and Christophe Garcia. 2010. Em-

bedded facial image processing with convolutional neural networks.

In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on. IEEE, 261–264.

[35] SparshMittal. 2016. A survey of techniques for approximate computing.

ACM Computing Surveys (CSUR) 48, 4 (2016), 62.

[36] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning.

IEEE Transactions on knowledge and data engineering 22, 10 (2010),

1345–1359.

[37] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. 2013.

Learning separable filters. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2754–2761.

[38] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob

Fergus, and Yann LeCun. 2013. Overfeat: Integrated recognition, lo-

calization and detection using convolutional networks. arXiv preprint

arXiv:1312.6229 (2013).

[39] Pierre Sermanet, Koray Kavukcuoglu, and Yann LeCun. 2009. Eblearn:

Open-source energy-based learning in c++. In Tools with Artificial

Intelligence, 2009. ICTAI’09. 21st International Conference on. IEEE, 693–

697.

[40] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[41] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent

neural networks from overfitting. Journal of machine learning research

15, 1 (2014), 1929–1958.
[42] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017. Effi-

cient processing of deep neural networks: A tutorial and survey. arXiv

preprint arXiv:1703.09039 (2017).

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. 2015. Going deeper with convolutions. In Proceedings of

the IEEE conference on computer vision and pattern recognition. 1–9.

[44] Vincent Vanhoucke, Andrew Senior, and Mark ZMao. 2011. Improving

the speed of neural networks on CPUs. In Proc. Deep Learning and

Unsupervised Feature Learning NIPS Workshop, Vol. 1. 4.

[45] MatthewDZeiler and Rob Fergus. 2014. Visualizing and understanding

convolutional networks. In European conference on computer vision.

Springer, 818–833.

[46] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and

Jason Cong. 2015. Optimizing fpga-based accelerator design for deep

convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. ACM,

161–170.

[47] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav

Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr.

2015. Conditional random fields as recurrent neural networks. In

Proceedings of the IEEE International Conference on Computer Vision.

1529–1537.

223

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 01,2021 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.

